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Abstract.

Mathematical models have long provided basic insights for malaria control. The recent success of the

Onchocerciasis Control Program in west Africa shows that models can make great pragmatic contributions to interven-
tion programs if the modeling is integrated into the overall program, and if the participants are clear about what models
can and cannot do. This lesson can be applied to evidence-based malaria control.

HISTORY

“Among the many fads in the medical profession to-day...is
the theory...that anopheles is the means of the distribution of
the plasmodium of malaria. I shall show by statistics that
malaria is a water-borne complaint...” (Hurley, 1905)"

Clearly, Dr. Hurley’s statistics did not tell the whole story:
what he called a medical “fad” is a fact. Ronald Ross, who
had demonstrated eight years previously that malaria is trans-
mitted by Anopheles mosquitoes, also developed the first
mathematical model of malaria transmission and emphasized
that “the mathematical method of treatment is really nothing
but the application of careful reasoning to the problems at
issue.”?

That kind of modeling, what Ross called “a priori” model-
ing, produces models that embody hypotheses about how the
world works: that is, the models represent in mathematical
form our ideas about the underlying mechanisms and inter-
actions that generate the phenomena we are investigating.
Those sorts of models are used every day. They are familiar,
highly-valued tools in engineering and business, and in most
sciences, but they remain rare in the biomedical research and
public health communities.

Ross used his models to arrive at important practical con-
clusions such as that, “...to counteract malaria anywhere we
need not banish Anopheles there entirely...we need only to
reduce their numbers below a certain figure.”® This idea
about threshold densities of Anopheles was tested success-
fully.* Ross also used a model to conclude that control pro-
grams that integrated vector reduction (larvicides), drug
treatment (quinine), and personal protection (bed nets) were
much more likely to succeed than efforts that relied on just
one intervention measure.” Only a few of his contemporaries
paid attention to such ideas. Some incorporated them in suc-
cessful programs of environmental management,”’ but Ross’
models, and practical conclusions. were largely ignored.

In the 1950s, when George Macdonald returned to England
from years of work in the tropics, and began to build on Ross’
models, he had a similarly practical perspective, and similar
aims. He too expected “theory,” a priori models, to serve
highly practical purposes in intervention programs: “When a
method is chosen, theory acts as a guide to the degree of
efficiency to be demanded of it and as a background to the
examination of both success and failure.”®

Macdonald’s models indicated that at equilibrium, the
weakest link in the chain of malaria transmission was the
survivorship of adult female Anopheles. Given that his mod-
els were published at about the same time the global eradi-
cation campaign based on DDT began, with DDT targeted at
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adult female Anopheles, it is not surprising that this conclu-
sion was recruited to the cause. What Macdonald actually
wrote suggests more insight and caution, but it may be that he
too got caught up in the appeal of DDT as a “silver bullet.”
In any case, the Ross and Macdonald models were based on
the sort of structure sketched in Figure 1: the assumption is
that at any given moment an entire population can be divided
into distinct compartments, of the susceptible, the infected
and the infectious, and that infection spreads by random con-
tact between the appropriate susceptible and infectious “com-
partments” of the human and mosquito populations.

RECENT DEVELOPMENTS

By the 1970s, it was clear that Macdonald’s model could be
greatly improved by adding explicit considerations of human
immunity, at which point, as part of the Garki project in
Nigeria, Dietz and Molineaux developed a more sophisticated
model. That model, in their words, did a “fairly realistic” job
of simulating malaria epidemiology at Garki, given entomo-
logic inputs, and provided conditional, comparative forecasts
for several specific interventions.’ In the 1980s, Halloran and
others took another step by explicitly considering the popu-
lation-level effects of potential stage-specific vaccines.'”

Malaria modeling has moved on from there, of course, most
recently in line with an observation Macdonald made at the
very end of his life: “...a powerful tool for the design of
eradication and control programs, and for the analysis of dif-
ficulties in them, could be produced by the extension of dy-
namic studies using computer techniques.”"’

The power of modern computers has allowed the basic
ideas of the compartment models to be taken down to the
level of individuals, such that interacting populations are
modeled as large numbers of interacting individual humans
and individual mosquitoes, each with its own characteristics
and dynamics, between whom parasite genotypes, each with
its own characteristics and dynamics, can be transmitted. Fur-
ther steps toward biologic realism have begun to include the
effects of seasonality, meiotic recombination among parasites,
immunologic cross-reactivity, and other factors.'?

Now that malaria research and malaria control are begin-
ning to gain attention again, however, we should focus more
effort and more resources toward pragmatic, intervention-
focused modeling: we must make sure that malaria research
and malaria control benefit more directly from the best tools
available.'>**

The best recent example of pragmatic, effective interven-
tion-focused modeling comes not from malaria, but from the
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FIGURE 1. Schematic of the Ross-Macdonald models. Recent
models have added explicit representations of human immunity, and
have considered populations as aggregates of individuals rather than
as compartments (see text).

Onchocerciasis Control Program (OCP) in west Africa. The
OCP has been extremely successful, and there is no question
that its success can be attributed partly to its modeling com-
ponent.'>'® What is important is not so much the details of
those models, although they are good ones, or any specific
results, although there were extremely important ones, but
the fact that modeling was closely integrated with every part
of research and operations. As the modelers pointed out,
“modeling should be an integral part of the disease control
program. This calls for a system that is easy to use and that
can be adapted to new results and to changes in control
policy.”*” The OCP models were developed and tested as a
team effort, not in abstraction; they were seen and used on an
every-day basis, as working tools.

Their success came despite much initial skepticism within
OCP. Furthermore, modeling started at a time when the fu-
ture of the program itself was in very serious doubt: those
directly involved felt that a good job was being done, but the
principals could not be convinced. The models helped to con-
vince donors and the scientific community that there was
progress, and, very important, that there could be a successful
end if certain conditions were satisfied, conditions that were
clearly spelt out in the models. The modeling brought to-
gether all of the different scientists in OCP, i.e., epidemiolo-
gists, entomologists, economists, etc., as well as the operations
managers, and, by bringing all of the relevant data together,
modeling convincingly predicted eventual success. The im-
pact of this on the morale of all concerned was incalculable.
When OCP was finally terminated, in 2002, it was universally
regarded as a successful public health program. Modeling has
retained a prominent role in follow-up policy discussions.'® It
is time that we adopt this approach in malaria, and start using
mathematical models as tools in the fight.

UNDERSTANDING AND USING MODELS

It is critically important for modelers to remember, and
non-modelers to understand, what models can and cannot do
in this sort of context. We need to have realistic expectations.
In particular, in this context, models cannot provide accurate
numerical predictions of outcomes: they can be used to fore-
cast, but only in fairly gross terms. The biologic, social, and
other systems involved are sufficiently complex that it may
not be possible to even define all of the variables, much less
get precise predictions about their interactions and overall
results in a specific real-world situation. Thus, the key is to

look for large differences between different models, and be-
tween different interventions in the same modeling scenario.
That is, mathematical models can be used to 1) systematically
compare alternate strategies, 2) determine the key issues in
decision-making, and 3) identify gaps in current knowledge.

Mathematical models can help us figure out which deci-
sions will have the largest impacts on outcomes and can pro-
vide comprehensive examinations of the assumptions that en-
ter into decisions in a way that purely verbal reasoning and
debate cannot.

It is important to recognize that a great deal can be learned
from examining the differences as well as the similarities be-
tween models. Figure 2 illustrates this point, with hypothetical
output from hypothetical models. On the horizontal x-axis is
the percentage of the population covered by some interven-
tion, say bed nets, or a drug, or a vaccine. On the vertical
y-axis is the resulting percentage reduction in mortality. At
0% coverage, we see that there is no change, 0%, in the
number of deaths, and as we get close to 100% coverage, we
get close to a 100% reduction, i.e., no deaths at all. Both
models agree on that, which is what we would expect: the
more people covered the fewer the deaths.

However, there are clear differences between the model
results as well. For instance, what level of coverage might cut
casualties by a half? According to model A, a little less than
30% does the job; according to model B, a little more than
70% is needed. But remember what these sorts of models do:
they embody hypotheses about underlying mechanisms and
interactions. Thus, these differences might have to do with
two different ideas about how this intervention works in par-
ticular sub-populations, or at particular sites, or with two dif-
ferent ideas about whether this and some other intervention
act synergistically.

Those different ideas are right there in the models explic-
itly: you know what the different assumptions are, why the
modelers put them there, what data they are based on. Hope-
fully, if need be, you can find ways to test them. The results
you want to rely on in decision making, of course, are those
on which a number of different models agree, again, agree in
general terms, if not in detailed predictions. However, when
models disagree, assuming that they have been produced by
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FIGURE 2. Hypothetical output from two hypothetical models.
The horizontal x-axis shows the percentage of the population covered
by an intervention and the vertical y-axis shows the resulting percent-
age reduction in mortality (see text).
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competent, honest modelers, that typically tells you a great
deal about the information that you will have to use to make
your decisions in any case: What are the assumptions? What
are the most critical gaps and uncertainties in the data? Why
is there disagreement?

In non-malarious regions, enormous sums are invested in
modeling economies, and weather, although the models are
obviously wrong, and far too many real-world variables are
involved to ever get the models really right. We do that be-
cause the stakes are so high, and we cannot wait for “perfect”
models to magically appear, any more than we can in engi-
neering, or business, or war. Weather modeling has greatly
improved, in fact, precisely because models are used in con-
junction with empirical research to gain greater understand-
ing of the underlying mechanisms and interactions that pro-
duce weather. We must take advantage of similar approaches
and similar tools in malaria control because we cannot afford
not to.
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